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Abstract

Tweets ranking is important for information acquisition
in Microblog. Due to the content sparsity and lack of la-
beled data, it is better to employ semi-supervised learn-
ing methods to utilize the unlabeled data. However,
most of previous semi-supervised learning methods do
not consider the pair conflict problem, which means that
the new selected unlabeled data may have order conflict
with the labeled and previously selected data. It will
hurt the learning performance, if the training data con-
tains many conflict pairs. In this paper, we propose a
new collaborative semi-supervised SVM ranking model
(CSR-TC), selecting unlabeled data based on a dynam-
ically maintained transitive closure graph to avoid pair
conflict. We also investigate the two views of features,
intrinsic and content-relevant features, for the proposed
model. Extensive experiments are conducted on TREC
Microblogging corpus. The results demonstrate that
our proposed method achieves significant improvement,
compared to several state-of-the-art models.

1 Introduction
Microblog search aims to find tweets on a topic, given
users’ descriptions (O’Connor, Krieger, and Ahn 2010;
I. et al. 2011; I., I., and J 2012). People searching tweets
usually begin to read query results from the top to some-
where they get satisfied. Thus the task of our work generally
helps rank the most relevant tweets on top of the page, and
the irrelevant tweets at the end to avoid reading much irrele-
vant information. For example, a user launching the query of
“2022 FIFA soccer” in TREC Microblogging corpus 1 aims
to find relevant tweets about the soccer World Cup in 2022.
If requiring a fully match of the query words, the results
would be empty since the fragments of tweets. Otherwise,
without carefully ranking them, a lot of tweets about FIFA
Games for Xbox 360 are returned and mixed with relevant
ones on top of result list. For example the tweet in example
1 matches two underlined words, i.e. “FIFA” and “soccer”,
but irrelevant to the soccer World Cup.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://trec.nist.gov/data/tweets/

(a) Unlabeled items selected for classification.

(b) Unlabeled pairs selected for ranking.

Figure 1: Selecting unlabeled data for semi-supervised
learning.

Example 1. “played Crysis 2 Demo (360) and
FIFA Soccer 10 (360) in the last 24 hours.
http://raptr.com/DeXtRoXiToHeRo”

As a result, users may waste time to read much noisy mes-
sages before getting useful information about the real-life
soccer game in 2022. Therefore ranking as an artificial in-
telligence helps people capture useful information more ef-
ficiently while searching Microblog. Especially in disaster
information management, it helps make accurate and timely
information available from social media before (early warn-
ing and monitoring), during, and after disasters (Sakaki,
Okazaki, and Matsuo 2010).

A proper query expansion or an effective feature is a way
to solve the task. Previous methods (Massoudi et al. 2011;
Sakaki, Okazaki, and Matsuo 2010) separately used lan-
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guage model and a classifier with query expansion for Mi-
croblog retrieval. Naveed (Naveed et al. 2011) retrieved
tweets by introducing the chance a tweet may be retweeted.
Abel (Abel et al. 2011) extracted facet values for adaptive
faceted search. And social network properties of the authors
were considered in (Jabeur, Tamine, and Boughanem 2012;
Nagmoti, Teredesai, and Cock 2010). But recently, learn-
ing to ranking (LTR) (Liu 2009) achieves promising re-
sults on this task (Duan et al. 2010; Zhang, He, and Luo
2012), which includes meaningful objective functions and
integrates various features. In this paper, we also follow this
trend to utilize LTR framework for this task.

It is labor-intensive to manually label a large num-
ber of tweets. Therefore, we want to employ semi-
supervised learning methods for LTR. Most of the semi-
supervised learning methods were originally proposed for
classification, such as semi-supervised Support Vector Ma-
chines (Bennett, Demiriz, and others 1999; Fung and Man-
gasarian 2001), a.k.a. S3VMs, and co-training frame-
work (Blum and Mitchell 1998; Li, Hoi, and Chang
2010; Usunier, Amini, and Goutte 2011). Unlabeled data
was selected iteratively and independently in those semi-
supervised classification models, given the labeled and pre-
viously selected data. Take Figure 1 (a) as an example, in
their iterative learning framework, when given labeled item
a in red class, and unlabeled item b selected as blue class
(containing a “X” mark) previously, it is then free for models
to select unlabeled item c as either red or blue class for next
training iteration. However, in the case of ranking, labelling
data is always a process of deciding the order of a pair of
data. As the example in Figure 1 (b), labeled pair (a, b) and
previously selected pair (b, c) represented by directed edges
are given separately indicating that item a has higher order
than item b, and item b has higher order than item c. Based
on the knowledge, item a has higher order than item c. So
the only way to select unlabeled pair of item a and item c is
in order (a, c), depending on labeled pair (a, b) and selected
pair (b, c), while selecting pair (c, a) brings order conflict in
next iteration of semi-supervised learning. However, as to
the best of our knowledge, such a dependency for unlabeled
pair selection was not considered before in the existing semi-
supervised ranking models, e.g., (Zhang, He, and Luo 2012;
Tan et al. 2004). If selecting unlabeled pairs without con-
sidering order conflict, it may easily hurt the learning per-
formance especially in Microblog search since of the severe
lack of labeled data.

In the work, we propose order conflict constraint for semi-
supervised ranking models such as S3VM ranking model
and collaboratively S3VMs ranking model. With transi-
tive closure of the graph built on labeled pairs, the order
conflict constraint is normally formulated. Finally a multi-
objective programming is built to minimize structural risk
of labeled and collaboratively selected pairs with consid-
eration of order conflict. The independent “optimization”
step and the collaborative “selection with transitive closure”
step are performed alternatively in the model learning al-
gorithm. Queries are expended internally on the corpus,
combining with the ways of “cluster document” and term
co-occurrence. And two independent feature views, i.e.

content-relevant features and intrinsic properties of tweets,
are extracted. Extensive experiments are conducted on
TREC Microblogging corpus, with different parameters and
portions of labeled pairs for both transductive (Joachims
1999; Zhang, He, and Luo 2012) and inductive (Tan et al.
2004) learnings. As previous works on LTR fall into three
categories: the pointwise model, pairwise model and list-
wise model, according to different input forms(Xia et al.
2008; Yeh et al. 2007), compare to the state-of-art pairwise,
listwise, and pointwise ranking models and the well-known
semi-supervised algorithms, our approach achieves signifi-
cant improvements on metrics.

2 Collaboratively Learning with Transitive
Closure

In Microblog search on a topic, the topic is described as
an unambiguous query Qk. Queries can be expanded with
words Ek. Then a collection of tweets Tk is collected for
ranking, containing every tweet matching at least one of the
words in queryQk, or its expansion Ek. The relevant tweets
are scattering in the list Tk. Thus the ranking problem in the
paper is to find an order of tweet list Tk for unambiguous
query Qk, such that users can catch as many relevant tweets
to the topic as possible on top of the ranking result.

In the section, to use the massive unlabeled data, we firstly
introduce S3VM ranking model considering the pair con-
flict with transitive closure. To remit content sparseness of
tweets, we use two feature views χ1 and χ2 to separately
train two ranking models for collaborative pair selection.
And an iterative learning algorithm are described.

2.1 S3VM ranking model with order conflict
constraint

A supervised ranking SVM model with soft margins ξijk is
as follows.

min
ω,ξ

1

2
||ω||2 +

C

||L||1

∑
Lk,k

ξijk (1)

s.t. ωTΦ(Qk, ti)− ωTΦ(Qk, tj) ≥ 1− ξijk, ∀(ti, tj) ∈ Lk
ξ � 0

where Φ(Qk, ti) is the feature vector of tweet ti for query
Qk, and ω is the coefficient vector for corresponding feature
values. (ti, tj) is the labeled pairs of training data. ||ω||2 is
the L-2 norm of vector ω. ||L||1 =

∑
k |Lk| is the total

number of training pairs for all labeled queries, and | · | is
the size of a set. C is a constant coefficient. Let Sik be the
score of tweet ti queried by Qk, and Sik = ωTΦ(Qk, ti).

S3VM ranking model can be viewed as ranking SVM
with an additional optimization term on unlabeled pairs. Un-
labeled data can be viewed as a collection of ordered pairs
as well. A pair of tweets ti and tj is said to be unlabeled,
if the ranking order of ti and tj is not decided yet. Let
Uk be the unlabeled pair set of query Qk, and both pairs
(ti, tj) and (tj , ti) are in Uk. Once either of them is se-
lected, the other pair is also removed. It is seen later that
not all the pairs in Uk are valid to select for semi-supervised
learning, and we denote the final selected pairs as set Ûk for
queryQk. Therefore, by introducing the hinge loss function,
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hl(x) = max {0, 1− x}, S3VM ranking model is formu-
lated as (2).

min
ω

1

2
||ω||2 +

C

||L||1

∑
(ti,tj)∈Lk,k

hl(ω
T∆ijk) (2)

+
C ′

||Û ||1

∑
(ti,tj)∈Ûk,k

hl(ω
T∆ijk)

where we have defined the shorthand ∆ijk ≡ Φ(Qk, ti) −
Φ(Qk, tj), and ||Û ||1 =

∑
k |Ûk| is the sum of selected pairs

for all queries. C ′ is scaling constant for the loss of unla-
beled pairs.

Unfortunately, deciding the selected pair set Ûk is non-
trivial. On one hand, those unlabeled pairs (ti, tj) ∈ Ûk are
required to satisfy Sik − Sjk > 0 in the ranking model. We
then define boolean variables αijk as equation (3).

αijk =

{
1, ωT∆ijk > 0
0, otherwise.

= max {0, sign(ωT∆ijk)}. (3)

On the other hand, the selected pairs of set Ûk should
avoid order conflict discussed in Figure 1 (b). We can build
a directed graph G(Ûk ∪ Lk) on the pairs from Ûk ∪ Lk,
with all tweets in Tk as vertices and each pair as a directed
edge pointing from the higher order tweet to the lower one.
Thus directed graph G(Ûk ∪Lk) is required acyclic to avoid
order conflict. Furthermore, based on the truth that there are
no order conflicts in labeled pair set Lk, the order conflict
constraint for selected pairs can be generally described as
constraint (4)

∀(tu, tv) ∈ Ûk, such that ¬∃Pvu ⊆ G(Ûk ∪ Lk) (4)

where Pvu is a directed path from vertex tv to vertex tu.
However, it is time-consuming to check all the pair candi-

dates and possible paths between them from the selected and
labeled pair set, according to constraint (4). Therefore, we
introduce a concept of “transitive closure”, which is often
used in Graph Theory.

Definition 1. Graph Ġ is said to be transitive closure, if and
only if there is a directed path from vertex tu to tv , then there
exists a directed edge from vertex tu to tv .

Let graph G(Lk) be built on all the tweets in Tk as ver-
tices and ∀(ti, tj) ∈ Lk as directed edges. With the transi-
tive property, we can add a minimum number of pairs that
make graph G(Lk) transitive closure, keeping the essential
ranking problem unchanged. The transitive closure graph
is denoted as Ġ(Lk). The newly added pairs (t′i, t

′
j) ∈

Ġ(Lk) and its reverse pairs (t′j , t
′
i) are removed from un-

labeled set Uk. And the rest of unlabeled set is denoted as
U ′k ⊆ Uk. Let graph G(U ′k) be built on all the tweets in
list Tk as vertices, and pairs in U ′k as directed edges. Let
Pv1vn = {tv1 , tv2 , · · · , tvn} be a path of length n − 1 in
graph G(U ′k). Hence with transitive closure graph Ġ(Lk),

the order conflict constraint (4) is consequently simplified
as follows.

n−1∏
i=1

θvivi+1k = 0, θvivi+1k ∈ {0, 1} (5)

∀(tvn , tv1) ∈ Ġ(Lk) and ∀Pv1vn ⊆ G(U ′k),

n = 3, 4, · · · , |U ′k|.

At last, the selection set Ûk is determined by θijk · αijk.
The constraint (5) avoids any directed path from tv1 to tvn ,
which keeps graphG(Ûk∪Lk) acyclic, since edge (tvn , tv1)

in transitive closure graph Ġ(Lk). Therefore, the S3VM
ranking model considering order conflict constraints for all
queries is formulated as (6).

min
ω

1

2
||ω||2 +

C

||L||1

∑
Lk,k

hl(ω
T ∆ijk) (6)

+
C′∑
αijkθijk

∑
U′
k
,k

αijkθijkhl(ω
T ∆ijk) +

C′′∑
αijkθijk

s.t. αijk = max
{

0, sign(ωT ∆ijk)
}
, ∀(ti, tj) ∈ U ′

k

order conflict constraint (5) for θ.

where C ′′ is scaling constant for encouraging the model to
to choose as many validated pairs as possible.

2.2 Collaboratively ranking with order conflict
constraint

As discussed in (Li and Zhou 2010), without carefully
choosing the unlabeled data, the selected unlabeled pairs
may degenerate learning performance, and the ranking abil-
ity may be even worse than only using the labeled data. Thus
we try to choose the most confident labeled pairs instead of
all legal pairs, to reduce the risk of performance degener-
ation. The confidence of ∀ pair (ti, tj) ∈ U ′k is intuitively
measured by a function of the difference between their rank-
ing scores, i.e. ωT∆ijk. Given δ as the confidence thresh-
old, αijk = max

{
0, sign(ωT∆ijk − δ)

}
, where δ ∈ [0, 1).

Furthermore, splitting features into two views χ1 and χ2

, and selecting the unlabeled pairs collaboratively are also
helpful to reduce the risk of introducing noisy pairs. In
the primitive co-training framework, two learning models
are trained using two split feature views. The unlabeled
pairs selected according to both ranking models are added
into labeled data for the next co-training iteration. Though
RSCF (Tan et al. 2004) in ranking webpages selected un-
labeled pairs as either of ranking models felt confident, the
“agreement” strategy (Collins and Singer 1999) is adopted
to further guarantee the quality of selected pairs, since of
the extreme sparse features of tweets. So only those unla-
beled pairs that both rankers agree with are collaboratively
selected for optimization.

Let ∆
(1)
ijk and ∆

(1)
ijk be the feature differences of pair

(ti, tj) separately on two feature views χ1 and χ2 for query
Qk. We use αijk and α′ijk as the boolean indicators of
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confidence for two rankers respectively. The selected pairs
in set Ûk are then decided by θijkαijkα

′
ijk, and define

µijk = θijkαijkα
′
ijk. Finally, the collaboratively S3VMs

ranking model is formulated as follows.

min
ω(1),ω(2)



1

2
||ω(1)||2 +

C

||L||1

∑
Lk,k

hl(ω
T
(1)∆

(1)
ijk)

+
C′∑
µijk

∑
U′
k
,k

µijkhl(ω
T
(1)∆

(1)
ijk) +

C′′∑
µijk

1

2
||ω(2)||2 +

C

||L||1

∑
Lk,k

hl(ω
T
(2)∆

(2)
ijk)

+
C′∑
µijk

∑
U′
k
,k

µijkhl(ω
T
(2)∆

(2)
ijk) +

C′′∑
µijk


(7a)

s.t. αijk = max
{

0, sign(ωT(1)∆
(1)
ijk − δ)

}
, (7b)

α′
ijk = max

{
0, sign(ωT(2)∆

(2)
ijk − δ)

}
, (7c)

∀(ti, tj) ∈ U ′
k.

order conflict constraint (5) for θ.

The coefficients ω(1) and ω(2) are corresponding to two
feature views. They have the same dimension as the whole
feature space. And those coefficients in ω(·) are set to be 0
while the corresponding features are not in the features view.

2.3 Model learning
Since the collaboratively ranking model (7) is nonconvex
and multiobjective, we use an iterative and heuristic algo-
rithm to learn the model, by fixing boolean vectors µ (i.e.
the selection of unlabeled pairs) for structural risk minimiza-
tion and coefficient vector ω(1),ω(2) for unlabeled pair se-
lection alternatively. Thus there are two steps: the optimiza-
tion step and the selection step with transitive closure in our
learning algorithm.

In the optimization step: µ is fixed. The structural risk of
labeled and collaboratively selected pairs Ûk is minimized
for every query Qk. The model (7) is reduced to two inde-
pendent SVMs optimizations, since of the assumption that
two views of features χ1 and χ2 are independent. With solv-
ing the general SVMs optimization problems, the model pa-
rameters ω(1) and ω(2) are estimated.

In the selection step with transitive closure: (ω(1), ω(2))
is fixed. α and α′ are calculated as constraints (7b) and
(7b) respectively. We notice that the pairs in U ′k count for
optimization target (7a) only if α·α′· = 1 simultaneously.
Thus we only need to consider those edges in graph G(U ′k)
such that both confidence indicators α· and α′· are nonzero.
Furthermore, in order to avoid find all the validated paths
in graph G(U ′k) in each iteration, a transitive closure graph
Ġ(Ûk ∪ Lk) is dynamically maintained on labeled and pre-
viously selected pairs. We heuristically and sequentially
add unlabeled pairs into Ûk from higher confident pairs to
lower one. Once a pair is added, the transitive closure graph
Ġ(Ûk∪Lk) are maintained by adding the minimum of extra
pairs, and the added pairs are not withdrew anymore. There-
fore, the only thing we do to decide θijk of an unlabeled
pair (ti, tj) is to check if its reverse pair (tj , ti) is in graph

Ġ(Ûk ∪ Lk). At last, selection indicators µ is calculated
accordingly.

In practice, we limit the number of confident pairs se-
lected in each iteration to keep out some noisy data espe-
cially at the early iterations of our algorithm. The algorithm
(Yellin 1993) is used to incrementally maintains the transi-
tive closure. Finally, the iteration terminates until no confi-
dent pairs can be added for all queries with agreement.

2.4 Query Expansion and Two-view Features on
Tweets

At first, we leverage two Pseudo-Relevance Feedback meth-
ods for internal expansions for query Qk. One is that we
assume that the retrieved top tweets with the highest ranking
scores are more relevant. By viewing them as a “document”,
we estimate each word’s weight by the following formula.

W f
k (τ) = idf(τ) ·

∑
i∈π Sik · tf(ti, τ)∑

i∈π Sik
(8)

where π = π(1), π(2), . . . , π(K) is the index set of the
top K returned tweets, tf(ti, τ) is the term frequency of τ
in tweet ti, and idf(τ) is the inverse document frequency
in the corpus. Besides, we use term co-occurrence in the
corpus as a second method to choose expansion words, and
their weights are estimated using the following formula.

W c
k (τ) =

1∑
i∈π Sik

∑
i∈π

Sik ·
tck(τ)∑
o∈ti tck(o)

(9)

where tck(τ) indicates the term τ co-occurrence with query
terms of Qk, and it is normalized by

∑
o∈ti tck(o). At last,

those expansions to query Qk form vector Ek with weight
W f
k (τ) ·W c

k (τ), which is used as a weighting scalar for fea-
ture calculation.

We explore content-relevant features of tweet ti denoted
separately as Rik and REik for query Qk and its expansion
Ek, and the tweets intrinsic properties denoted as Ii. Totally,
there are 51 features extracted as discussed in (Zhu et al.
2012). Due to the space constraint, we only introduce some
of the features. In features R, we use Boolean model, vec-
tor space model (VSM), Okapi BM252 model, and language
model for IR (lmir) (Ponte and Croft 1998) for the scores of
the retrieval models. Meanwhile, three smoothing methods
are used for lmir respectively, i.e. Dirichlet Prior, Jelinek-
Mercer and Absolute Discounting. Features in RE are the
corresponding features for query expansion. In the set of in-
trinsic features I , we calculate ratios of out-of-vocabulary
words and unique word ratio in a tweet, properties of URLs,
hash tags and “@”, and etc. At last, we split the features in
R,RE and I into two views of χ1 and χ2: content-relevant
view of features R and RE, and intrinsic view of features
I .

3 Experiments
We use TREC Microblogging corpus from the 2012 release.
There are about 113,928 labeled tweets on 109 topic queries,

2http://en.wikipedia.org/wiki/Okapi BM25
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out of 7,443,387 tweets totally. The tweets are officially la-
beled as highly relevant (2), relevant (1), and irrelevant (0)
as our ground truth. We use the first 49 queries as training
queries, and the rest of 60 as testing queries, according to
the official setting of TREC 2012. In the experiment, only
a part of data from training queries are viewed as labeled
for learning to rank. Two kinds of sampling methods are
used to generate the labeled data and unlabeled data from
training queries. One is “pairwise sampling”: we gener-
ate ordered pair sets L∗k, according to the three relevance
levels, where k = 1, 2, . . . , 49, and get totally 2,009,384
pairs. Different ratio of pairs are randomly sampled from
L∗k as labeled data Lk, and the rest are viewed as unla-
beled for training. Such training data actually are useful
for integrating with active learning (Tong and Koller 2001;
Yu 2005). The other is “pointwise sampling”: we randomly
sample a specific percent of 3 relevance levels of tweets
instead of pairs from training queries, and the rest tweets
are viewed as unlabeled. In such a traditional way, we can
compare our method with a wide range of baselines, includ-
ing list-wise and point-wise ranking models. In the testing
phase, we return at most 1000 tweets for each testing query,
and evaluate the results with official scripts.

For shortness, our approach of “collaboratively S3VMs
ranking with transitive closure” is denoted as “CSR-TC”.
And the following baselines are compared, including pair-
wise models, i.e. ranking SVM and RankBoost; listwise
models, i.e. ListNet, AdaRank and LambdaMART; point-
wise models, i.e. MART and RF (Random Forests), which
are implemented in RankLib3. And semi-supervised algo-
rithms, namely, SR (S3VM ranking) (Zhang, He, and Luo
2012) which is sled-training, and RSCF (Tan et al. 2004)
in co-training framework are also compared. All the su-
pervised and self-training baselines are trained on combined
features of {χ1, χ2}. The metrics for the ranking results are
then P@10 (precision at top 10), P@20, P@30, MAP (mean
average precision) and AUC (area under ROC, receiver op-
erating characteristic curve).

3.1 Experimental Results
Start with different portions of labeled data In order
to show the performance and convergence of our approach
CSR-TC, we randomly sample labeled pairs from training
queries in pairwise with percentage τ as set Lk, and the rest
pairs and those pairs in testing query are viewed as unlabeled
pairs for training, which is the way of transductive learning.
In Table 1, it gives the results on P@30s, MAPs and pair-
Counts that are respectively the number of initially labeled
pairs of RankSVM, and the summation of labeled and final
selected pairs at the end of CSR-TC for all training queries.
The results start with different sample percentage τ are given
in groups separately. At every last row “incr” of the groups,
the increase of CSR-TC are given, compared to rankSVM.
It is seen that even there are only 17 pairs of training data,
CSR-TC achieves an acceptable P@30 of 0.2109 on aver-
age, which improves 11.31% compared to rankSVM. With
τ = 0.1%, the P@30 and MAP become comparable to the

3http://people.cs.umass.edu/˜vdang/ranklib.html

results with sampling percentage of 1%. Thus CSR-TC can
achieve convinced and converged ranking results by labeling
a little portion of pairs.

Table 1: Improvement of CSR-TC with different sampling
percentages.

τ= % P@30 MAP pairCount

0.001
RankSVM 0.1895 0.1785 17
CSR-TC 0.2109 0.2015 42353
incr(%) 11.31 12.85 –

0.01
RankSVM 0.1927 0.1873 201
CSR-TC 0.2125 0.2020 63320
incr(%) 10.28 7.88 –

0.1
RankSVM 0.1919 0.1848 2024
CSR-TC 0.2153 0.2065 242665
incr(%) 12.22 11.72 –

1
RankSVM 0.2006 0.1877 21814
CSR-TC 0.2153 0.2134 526161
incr(%) 7.35 13.67 –

10
RankSVM 0.2071 0.1885 280885
CSR-TC 0.2220 0.2311 600613
incr(%) 7.19 22.60 –

50
RankSVM 0.2158 0.2030 1161108
CSR-TC 0.2243 0.2112 1555504
incr(%) 3.94 4.04 –

100
RankSVM 0.2203 0.2053 2009384
CSR-TC 0.2316 0.2228 2028424
incr(%) 5.13 8.52 –

Table 2: CSR-TC with different confidence thresholds.
δ = 0.1 0.3 0.5 0.7

P@30 0.2232 0.2226 0.2316 0.2203
MAP 0.2231 0.2249 0.2228 0.2053

IterCount 645 663 125 12

CSR-TC on different confidence thresholds Experi-
ments with different confidence thresholds δ are shown in
Table 2. From the results, we can see that in the setting
of confidence δ = 0.5, CSR-TC performs better than oth-
ers. It shows that too strict selections with higher confidence
0.7, stop bringing enough unlabeled pairs to boost our semi-
supervised model, which terminate within 12 iterations.

Comparison with baselines We sample 50% of the la-
beled data from 49 training queries in a pointwise way, and
generate labeled pairs Lk. The rest of tweets from training
queries are used as unlabeled data for inductive training, i.e.
data from testing queries are not added for training. Our
CSR-TC is compared with the baselines in Table 3, on the
metrics, and the improvements of our CSR-TC to the others
are illustrated in columns. Since the AUC values are very
closed to each other, we only list the improvement percent-
ages of CSR-TC to other approaches in the last column. Our
CSR-TC is trained with confidence threshold δ = 0.7. Be-
sides we implement SR that takes the consideration of order
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Table 3: Comparison with baselines on 50% partially labeled tweets.

P@10 our impr+ P@20 our impr P@30 our impr MAP our impr AUC
(%) (%) (%) (%) our impr (10−5)

RankSVM 0.2864 8.31 0.2500 2.36 0.2186 3.11 0.1910 10.16 5.48
RankBoost 0.3000 3.40 0.2424 5.57 0.2153 4.69 0.1918 9.70 18.59
ListNet 0.2932 5.80 0.2297 11.41 0.2034 10.82 0.1921 9.53 26.14
AdaRank 0.2847 8.96 0.2441 4.83 0.2102 7.23 0.1868 12.63 14.66
CA 0.2898 7.04 0.2398 6.71 0.2056 9.63 0.1914 9.93 7.84
LambdaMART 0.2305 34.58 0.2025 26.37 0.1746 29.10 0.1551 35.65 22.23
MART 0.2492 24.48 0.2076 23.27 0.1768 27.49 0.1460 44.11 16.63
RF 0.2847 8.96 0.2415 5.96 0.2096 7.54 0.1906 10.39 13.16
SR 0.2898 7.04 0.2508 2.03 0.2192 2.83 0.1917 9.75 4.09
SR-TC 0.3017 2.82 0.2517 1.67 0.2209 2.04 0.1930 9.02 11.03
RSCF 0.3034 2.24 0.2517 1.67 0.2215 1.76 0.2087 0.81 7.00
CSR 0.3051 1.67 0.2517 1.67 0.2220 1.53 0.2094 0.48 5.92
CSR-TC4 0.3102 – 0.2559 – 0.2254 – 0.2104 – –

* p-values ≤ 0.012 in statistical significant testing of “our impr”.
+ “our impr” is the improvement of our CSR-TC to the methods in the corresponding row.

conflict, denoted as SR-TC, and the CSR-TC without con-
sidering order conflict, denoted as CSR.

It is seen that CSR-TC improves P@30 by 3.11% and
4.69%, and MAP by 10.16% and 9.07%, compared to the
pairwise models, i.e., RankSVM and RankBoost separately;
it improves P@30 between 7.23% and 29.10% and MAP
within 9.53% and 35.65%, compared to the listwise mod-
els, i.e., ListNet, AdaRank, CA, and LambdaMART; and
it improves P@30 by 27.49% and 7.54%, and MAP by
44.11% and 10.39%, compared to the pointwise models, i.e.
MART and RF separately. We can see that CSR-TC in trans-
ductive scheme outperforms all the well-know supervised
baselines. Besides, the pairwise models consistently per-
form better than the listwise models, which exactly shows
that with only 3 levels of labeled data and extremely sparse
content of tweets, listwise models cannot take its advan-
tages to model the total list. As for those semi-supervised
approaches, CSR-TC achieves 2.83% and 1.76% improve-
ments in P@30, and 9.75% and 0.81% improvements in
MAP, separately comparing to previous self-training work
SR in (Zhang, He, and Luo 2012), and co-training work
RSCF in (Tan et al. 2004).

Furthermore, in order to show the effects of order conflict
constraint with transitive closure, we separately compared
SR with SR-TC, and CSR without order conflict constraint
with our CSR-TC. It is seen that both SR-TC and CSR-TC
considering order conflict constraint outperforms SR and
CSR consistently in precisions (P@10, P@20, P@30) and
MAP. But the average AUC of SR-TC inferior to that of SR
indicates the quickly descending of precision increases after
the top 30 of overall 1000 returned tweets in some testing
queries. Meanwhile compared with SR, SR-TC gets the in-
crease ratio 0.78% in P@30 lower than the increase ratio
0.68% in MAP reflecting the descending as well. However,
lower AUC by SR-TC does not hurt the performance to rank-
ing tweets in practice, since people usually would not read
through such a long list. The relatively small increases of

SR-TC vs. SR compared to that of CSR-TC vs. CSR just
give an evidence that collaboratively learning is affected by
conflict pairs more easily.

The significance testings of t-test are conducted on the
average improvement ratios of CSR-TC compared to all the
other methods in Table 3. And p-values ≤ 0.012 indicating
that CSR-TC approach outperforms others significantly.

4 Conclusions
Ranking tweets is a vital component of Microblog Search
on topics, helping users get useful and timely information in
an efficient way. CSR-TC is proposed to rank tweets by la-
beled and collaboratively selected pairs with transitive clo-
sure to avoid order conflict, due to the content sparseness
and lack of labeled data in Microblog search. 51 features
are extracted and split into two views, i.e. content-relevance
view and tweets intrinsic view. An iterative learning algo-
rithm is designed, and the dynamically maintained transitive
closure graph on labeled and unlabeled pairs helps to honor
order conflict heuristically yet efficiently. Experiments show
us the convincing results.

The way we learning to rank tweets is in accordance with
the schema of human learning, exploring unknown objects
with what they known (semi-supervised), and the data are
not i.i.d., i.e., connections between an unknown objects and
the one they already known. Thus our attempt to solve the
specific problem in such an angle is a practice of artificial
intelligence. At last, it is worth mentioning that such work
contributes for the use of social media for social goodness,
and can be applied to effective information management for
disasters.
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