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Graphs are useful

• Graph is a powerful tool to model the connection between objects.

• Many fields
• Protein network

• Social network

• Transportation network

• ...



Graphs grow larger

Hard to store, process and analyze.

Solution: Graph Summarization.
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Graph Summarization
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A novel reconstruction scheme

More closer



More compact summary graphs

Lower encoding length 



Save time and memory for GNN

• Save both time and memory
• Comparable performance



Fast and scalable

Scales linearly to number of edges (|E|).
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Graph Summarization
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Graph Summarization
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Graph Summarization
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Uniform Reconstruction Scheme

• Related works:
• k-GS [LeFevre 2010]

• SAA-Gs [Beg 2018]

• SSumM [Lee 2020]

• Each node pair shares the same connect probability.

• Corresponding to Erdos-Renyi Random Graph Model.

• Is Erdos-Renyi Model a good null model?
• Skewed-distributed

• Power-law



Skewness of real-world graphs

Power-law Erdos-Renyi



Configuration-based reconstruction

• Configuration model: 𝐴′ 𝑖, 𝑗 ∝ 𝑑𝑖𝑑𝑗.

• More specifically

𝐴′ 𝑖, 𝑗 =
𝑑𝑖
𝐷𝑝

𝐴𝑠 𝑝, 𝑞
𝑑𝑗

𝐷𝑞

• 𝑑𝑖 : degree of node 𝑖.

• 𝐷𝑝 = σ𝑖∈𝑆𝑝
𝑑𝑖.

• 𝐴𝑠 𝑝, 𝑞 : Weight of superedge (𝑆𝑝, 𝑆𝑞).
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Uniform Scheme
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Configuration-based scheme 
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Our scheme is better



Degree-Preserving
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Main idea

• Basic operation: merging node together.

• Criterion: Size of summary graph is small, Reconstruction error is small.

• MDL (Minimum Description Length) principle.

• MDL finds a model minimizing the total description length:

𝐿 𝑀,𝐷 = 𝐿 𝑀 + 𝐿(𝐷 ∣ 𝑀)

• Model 𝑀: Summary graph;  Data 𝐷: Original Graph.

Model Part Error Part



MDL encoding

• Error part: (generalized) KL-divergence:

𝐿 𝐷 𝑀 = KL(𝐴||𝐴′) = ෍

𝑖𝑗

𝐴 𝑖, 𝑗 ln
𝐴 𝑖, 𝑗

𝐴′ 𝑖, 𝑗
− 𝐴 𝑖, 𝑗 + 𝐴′(𝑖, 𝑗)

• Extra bits to encode 𝐴 given 𝐴′.



Algorithm Procedure

Main Procedure:
• Initialize each node as a supernode.
• Iteration (T turns):

• Group supernodes using LSH
• For each group:

• Sample supernode pairs and merge supernodes in 
each group

• Return summary graph

• Tips:
• Merge nodes with similar neighborhood yield greater 

decrease to total description length.

• Use LSH (Locality Sensitive Hashing) to group nodes.



Initialization
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LSH Grouping
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Sample and Merge
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Sample and Merge
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Sample and Merge
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Sample and Merge
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Sample and Merge
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Sample and Merge
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Return summary graph
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Spectral Preservation

• Theorem (Eigenvalue Perturbation)

෍

𝑖

𝜆𝑖 − 𝜆𝑖
′ 2 ≤ 2 ⋅ 𝐿 𝐷 𝑀

Eigenvalue of 𝐺
(normalized Laplacian)

Eigenvalue of 𝐺′

(normalized Laplacian)
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Dataset

• Synthetic graphs using different random graph.

• 8 real-world networks (up to 100M edges).
• Protein network.

• Social Network.

• Co-purchase network.



Our scheme is better than uniform scheme

• Two synthetic data: E-R model and power-law model.

• Compare encoding error L(D|M).

Uniform (blue) v.s. Configuration (red)



Our scheme can improve existing methods.



DPGS yields the most compact summary graphs

Lower encoding length 



Save time and memory for GNN

Amazon2M (2.4 M nodes, 61 M edges)

Original graph ( )

Summary graph ( )

F1 score: 0.8901 (orig) vs 0.870 (summ)

• Save both time and memory
• Comparable performance

1Cluster-GCN (2 layer)



Fast and scalable

Scales linearly to number of edges (|E|).
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Conclusion

• Introduce the configuration-based reconstruction scheme.

• Propose a novel degree-preserving graph summarization algorithm.

• Our algorithm yields more compact summary graphs.

• Our algorithms runs fast, scales linearly, and helps to train large GNN 
model.



Thank you!
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