Baolong Bi, Shenghua Liu, Yiwei Wang, Siqian Tong, Lingrui Mei, Yuyao Ge, Yilong Xu, Jiafeng Guo, Xueqi Cheng
(2025).
Reward and Guidance through Rubrics: Promoting Exploration to Improve Multi-Domain Reasoning.
CoRR, 2025, vol. abs/2511.12344.
Yuyao Ge, Lingrui Mei, Zenghao Duan, Tianhao Li, Yujia Zheng, Yiwei Wang, Lexin Wang, Jiayu Yao, Tianyu Liu, Yujun Cai, Baolong Bi, Fangda Guo, Jiafeng Guo, Shenghua Liu, Xueqi Cheng
(2025).
A Survey of Vibe Coding with Large Language Models.
arXiv preprint arXiv:2510.12399.
Baolong Bi, Shaohan Huang, Yiwei Wang, Tianchi Yang, Zihan Zhang, Haizhen Huang, Lingrui Mei, Junfeng Fang, Zehao Li, Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang, Shenghua Liu
(2025).
Context-DPO: Aligning Language Models for Context-Faithfulness.
Findings of the Association for Computational Linguistics: ACL 2025.
Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Baolong Bi, Yujun Cai, Jiazhi Liu, Mingyu Li, Zhong-Zhi Li, Duzhen Zhang, Chenlin Zhou, Jiayi Mao, Tianze Xia, Jiafeng Guo, Shenghua Liu
(2025).
A Survey of Context Engineering for Large Language Models.
arXiv preprint arXiv:2507.13334.
Baolong Bi, Shenghua Liu, Xingzhang Ren, Dayiheng Liu, Junyang Lin, Yiwei Wang, Lingrui Mei, Junfeng Fang, Jiafeng Guo, Xueqi Cheng
(2025).
RefineX: Learning to Refine Pre-training Data at Scale from Expert-Guided Programs.
CoRR, 2025, vol. abs/2503.15888.
Jiayu Yao, Shenghua Liu, Yiwei Wang, Lingrui Mei, Baolong Bi, Yuyao Ge, Zhecheng Li, Xueqi Cheng
(2025).
Who is in the Spotlight: The Hidden Bias Undermining Multimodal Retrieval-Augmented Generation.
Proc. of the Empirical Methods in Natural Language Processing, EMNLP Main, 2025, pages 15194–15204.
Shenghua Liu, Bin Zhou, Quan Ding, Bryan Hooi, Zhengbo Zhang, Huawei Shen, Xueqi Cheng
(2023).
Time Series Anomaly Detection With Adversarial Reconstruction Networks.
IEEE Transactions on Knowledge and Data Engineering, TKDE, 2023, vol. 35, no. 4, pages 4293-4306.
Xiaobing Sun, Wenjie Feng, Shenghua Liu, Yuyang Xie, Siddharth Bhatia, Bryan Hooi, Wenhan Wang, Xueqi Cheng
(2022).
MonLAD: Money Laundering Agents Detection in Transaction Streams.
Proc. of the ACM International Conference on Web Search and Data Mining, WSDM, 2022, pages 976-986.
Xiaobing Sun, Jiabao Zhang, Qiming Zhao, Shenghua Liu, Jinglei Chen, Ruoyu Zhuang, Huawei Shen, Xueqi Cheng
(2021).
CubeFlow: Money Laundering Detection with Coupled Tensors.
Proc. of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD, 2021, pages 78-90.
Xueqi Cheng, Shenghua Liu, Xiaoqian Sun, Zidong Wang, Houquan Zhou, Yu Shao, Huawei Shen
(2021).
Combating Emerging Financial Risks in the Big Data Era: A Perspective Review.
Fundamental Research, 2021, vol. 1, no. 5, pages 595-606.
Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, Xueqi Cheng
(2020).
FlowScope: Spotting Money Laundering Based on Graphs.
Proc. of the Association for the Advancement of Artificial Intelligence, AAAI, 2020, pages 4731-4738.
Xiangyun Ding, Wenjian Yu, Yuyang Xie, Shenghua Liu
(2020).
Efficient Model-Based Collaborative Filtering with Fast Adaptive PCA.
32nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA, November 9-11, 2020, 2020, pages 955-960.
Shenghua Liu, Guoqiang Chen, Tom Tong Jing, Lei He, Tianpei Zhang, Robi Dutta, Xianlong Hong
(2009).
Substrate Topological Routing for High-Density Packages.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, TCAD, 2009, vol. 28, no. 2, pages 207-216.